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ABSTRACT

Tunupa volcano is a composite cone in the central Andean arc of South America located ~115 km behind the arc front. We present new 
geochemical data and 40Ar/39Ar age determinations from Tunupa volcano and the nearby Huayrana lavas, and we discuss their petrogenesis 
within the context of the lithospheric dynamics and orogenic volcanism of the southern Altiplano region (~18.5°S–21°S). The Tunupa edifice 
was constructed between 1.55 ± 0.01 and 1.40 ± 0.04 Ma, and the lavas exhibit typical subduction signatures with positive large ion lithophile 
element (LILE) and negative high field strength element (HFSE) anomalies. Relative to composite centers of the frontal arc, the Tunupa lavas 
are enriched in HFSEs, particularly Nb, Ta, and Ti. Nb-Ta-Ti enrichments are also observed in Pliocene and younger monogenetic lavas in the 
Altiplano Basin to the east of Tunupa, as well as in rear arc lavas elsewhere on the central Andean Plateau. Nb concentrations show very little 
variation with silica content or other indices of differentiation at Tunupa and most other central Andean composite centers. We propose that 
this distinct compositional domain reflects an amphibole- and/or phlogopite-rich mantle lithospheric source. Breakdown of these minerals 
during lithospheric delamination may provide a melting trigger for Tunupa, as has been suggested for other rear arc plateau lavas of the 
central Andes, and for plateau regions globally. The ca. 11 Ma Huayrana lavas indicate that this process had begun in the central Altiplano 
Basin by this time. The enriched Nb-Ta-Ti signature of plateau lavas may be an important indicator of hydrous mineral breakdown within the 
mantle lithosphere, and it can be detected in lavas that that have likely experienced crustal contamination.

INTRODUCTION

The central Andean Plateau (Altiplano-Puna) 
of western South America (14°S–28°S) is the 
only modern geologic setting on Earth where 
subduction of an oceanic plate beneath a conti-
nent has led to the formation of a major continen-
tal plateau (Isacks, 1988), surpassed in elevation 
and extent only by the Tibetan Plateau (continent-
continent collision). This apparent plate-tectonic 
paradox has been the focus of numerous studies 
seeking to understand the processes of its forma-
tion and evolution (e.g., Allmendinger et al., 
1997; Lamb and Davis, 2003; Garzione et al., 
2006; Oncken et al., 2006; Barnes and Ehlers, 
2009; Faccenna et al., 2013). Whereas active 
subduction has resulted in frontal arc volcanism 
along the western edge of central South Amer-
ica for much of the past 200 m.y. (James, 1971; 
Davidson et al., 1991; Haschke et al., 2002), the 
sources and processes involved in producing the 
abundant mid- to late Cenozoic rear arc magma-
tism, hundreds of kilometers east of the frontal 
arc, remain poorly understood (Davidson and 
de Silva, 1992; Kay and Kay, 1993; Trumbull et 

al., 2006; Hoke and Lamb, 2007; Kay and Coira, 
2009; Mamani et al., 2010).

Rear arc magmatism in the central Andes 
may be closely related to the processes of plateau 
formation, as suggested by the close spatial, and 
temporal, correlation between crustal thickening 
and volcanic vent distribution (e.g., Allmendinger 
et al., 1997; Trumbull et al., 2006). Based largely 
on seismic studies that suggest a dominantly fel-
sic crustal composition and lower than expected 
thicknesses of mantle lithosphere in this region 
of intense crustal shortening (Whitman et al., 
1996; Myers et al., 1998; Beck and Zandt, 2002; 
Yuan et al., 2002; McQuarrie et al., 2005), many 
researchers have argued for an important role for 
density-driven removal (delamination) of vary-
ing amounts of the mafic lower crust and mantle 
lithosphere beneath the central Andes. Although 
a magmatic response to lithospheric removal is 
generally expected in orogenic zones such as the 
central Andes (e.g., Kay and Kay, 1991, 1993; 
Elkins-Tanton, 2005), the petrogenetic sources 
and melting triggers are a matter of consider-
able debate (Kay et al., 1994; Davidson and de 
Silva, 1995; Hoke and Lamb, 2007; Jiménez 

and López-Velásquez, 2008; Drew et al., 2009; 
Kay and Coira, 2009; Ducea et al., 2013). In this 
study, we present new 40Ar/39Ar and whole-rock 
elemental data for the composite rear-arc Tunupa 
volcano of the Bolivian Altiplano, and we evalu-
ate these data within the context of regional pla-
teau volcanism. We find that Tunupa and regional 
rear arc lavas are enigmatically enriched in Nb-
Ta-Ti in relation to lavas of the arc front, and 
we propose that this enrichment is ultimately 
derived from the breakdown of hydrous minerals 
(amphibole, phlogopite) within the delaminating 
mantle lithosphere. Nb-Ta-Ti–rich lavas are also 
found in the Tibetan Plateau, and we suggest that 
this geochemical signature may be an important 
reflection of magmatism associated with plateau 
formation globally.

TUNUPA VOLCANO

The Pleistocene Tunupa volcano (19.8°S, 
67.6°W) is centrally located within the latitude-
defined, southern Altiplano transect (17°S–21°S; 
Kay and Coira, 2009) of the central Andean Pla-
teau (Figs. 1 and 2). Tunupa is situated near the 
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center of the Altiplano Basin of Bolivia, ~115 km 
east of the Pleistocene frontal arc of the Western 
Cordillera, ~115 km west of the fold-and-thrust 
belt of the Eastern Cordillera, and ~175 km 
above the subducting Nazca plate. Despite its 
rear arc location, Tunupa shares broad geomor-
phological similarities with the composite cen-
ters of the frontal arc, including edifice height 
(1.8 km), summit elevation (5.4 km), cone diam-
eter (15 km), and eruptive volume (~84 km3). 
Tunupa is deeply eroded on its east-southeastern 
flank, where glacial and volcaniclastic sediments 
form a depositional apron around much of the 
edifice. Its central peak is extensively hydro-
thermally altered with abundant sulfur visible 
in aerial photographs. A series of morphologi-
cally distinct domes located on the eastern flanks 
overlie flows of the main Tunupa edifice (Fig. 3). 
Small-volume pyroclastic deposits of unknown 
depth crop out within the drainages of the north-
ern flank (Fig. 3). Two K-Ar ages (1.8 ± 0.2 Ma 
[biotite] and 2.5 ± 0.5 Ma [plagioclase]) were 
reported in a regional study by Baker and Fran-
cis (1978), who also reported an 11.1 ± 0.4 Ma 
whole-rock K-Ar age for the Huayrana lavas 
located less than 3 km to the east of Tunupa 
(Figs. 2 and 3). No other geochemical or geo-
chronologic data were available for Tunupa or 
Huayrana prior to this study.

REGIONAL CENOZOIC REAR ARC 
MAGMATISM

Widespread rear arc volcanism began in the 
central Andes between ca. 30 and 25 Ma, follow-
ing ~10 m.y of intense crustal shortening and rela-
tive volcanic quiescence (James and Sacks, 1999; 
Trumbull et al., 2006). Miocene and younger 
ignimbrites, stratovolcanoes, monogenetic struc-
tures, and intrusive units are widely distributed 
in the central Andean rear arc region of Peru, 
Bolivia, and Argentina (for reviews, see Jiménez 
and López-Velásquez, 2008; Barnes and Ehlers, 
2009; Mamani et al., 2010; Kay and Coira, 2009). 
Miocene and younger, rear arc, large-volume, 
silicic ignimbrite fields such as Morococala, Los 
Frailes, Altiplano-Puna, and Cerro Gálan (Fig. 1) 
are restricted to the thick crustal regions of the 
central Andes. These fields likely represent large-
scale crustal melting, and suggest a petrogenetic 
origin associated with plateau construction (Coira 
et al., 1993; de Silva, 1989; Francis et al., 1989; 
Kay et al., 2010; Salisbury et al., 2011). Rear arc 
composite cones such as Tunupa, Uturuncu, and 
Tuzgle are located between 70 and 120 km from 
the rear arc and are generally composed of inter-
mediate compositions similar to volcanoes of 
the frontal arc (e.g., Davidson et al., 1991), with 
subtle differences in major- and trace-element 

geochemistry (Sparks et al., 2008; Coira and Kay, 
1993; Kay et al., 1994; Michelfelder et al., 2013). 
The most mafic rear arc lavas are generally asso-
ciated with smaller-volume, monogenetic, calc-
alkaline lavas, shoshonites, and other alkaline 
lavas (Déruelle, 1991; Davidson and de Silva, 
1992, 1995; Redwood and Rice, 1997; Hoke and 
Lamb, 2007; Carlier et al., 2005).

In the southern Altiplano transect, a similar 
range of eruption styles and compositions as the 
entire plateau is represented. The eastern region 
is dominated by the early Miocene to Quaternary 
Los Frailes volcanic plateau, covering a surface 
area of ~8000 km2, with an eruptive volume 
of ~2000 km3 (Jiménez and López-Velásquez, 
2008). West and north of Los Frailes, latest Oli-
gocene to early Miocene basaltic and shoshonitic 
lava flows and sills crop out with mid-Miocene, 
Pliocene, and Quaternary monogenetic lavas 
(Davidson and de Silva, 1992, 1995; Redwood 
and Rice, 1997; Hoke and Lamb, 2007). Tunupa 
is located in the central Altiplano, forming the 
eastern part of an E-W–trending, late Oligocene 
to Quaternary volcanic field, known as the Ser-
ranía Intersalar (Leytón and Jurado, 1995). The 
western edge of the Serranía Intersalar is marked 
by the Quaternary Sillajhuay composite volcano 
(Salisbury et al., 2013), located within the region 
of diminished late Pleistocene frontal arc activ-
ity known as the Pica Gap (Wörner et al., 1992, 
1994, 2000a), between Isluga and Irruputuncu 
volcanoes (Fig. 2).

Compositions, and proposed petrogenetic 
sources and melting mechanisms, of the Ceno-
zoic rear arc magmatism in the central Andes 
vary widely. Mantle-normalized trace-element 
patterns, including those from the more mafic 
samples, generally fall along a spectrum between 
rare intraplate (ocean-island basalt [OIB]–like) 
signatures and the more common, arc-like signa-
tures (e.g., Kay et al., 1994; Redwood and Rice, 
1997; Hoke and Lamb, 2007; Jiménez and López-
Velásquez, 2008). As clearly demonstrated in the 
postcollisional, potassic lavas from the Tibetan 
Plateau, melting to produce arc-like trace-ele-
ment patterns in orogenic plateau settings does 
occur in the absence of active subduction, and the 
mantle lithosphere is thought to be a major source 
of these melts (e.g., Turner et al., 1996; Williams 
et al., 2004). Derivation of melts within hydrous, 
mica-bearing mantle lithosphere has been argued 
in the central Andes for potassic magmas in both 
the rear arc regions of the northern Puna (Déru-
elle, 1991) and the northern Altiplano (Carlier et 
al., 2005). Although the proposed, plateau-wide, 
catastrophic delamination event between ca. 10 
and 6 Ma (Garzione et al., 2006) is controversial 
(e.g., Barnes and Ehlers, 2009), the removal of 
large amounts of mantle lithosphere has been 
implicated in the generation of the voluminous 
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Figure 1. Location map 
of the central Andes of 
South America. Quaternary 
composite volcanoes are 
shown as black triangles 
and major mid-Miocene to 
recent ignimbrite fields are 
darkly shaded. Dark circles 
in Argentina are locations 
of rear arc lavas discussed 
in the text (Déruelle, 1991; 
Schreiber and Schwab, 
1991; Drew et al., 2009). 
The >3 km elevations of 
the central Andean Plateau 
(Altiplano-Puna) are lightly 
shaded. The southern Alti-
plano segment (box, Fig. 2) 
is defined here as between 
~18°S and 21.5°S. APVC—
Altiplano-Puna volcanic 
complex.
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ignimbrites beneath the volcanic centers of Los 
Frailes and Gálan (Kay et al., 1994; Myers et al., 
1998). Melting accompanying such large-scale 
foundering events may be dominated by asthe-
nospheric upwelling, whereas the removal of 
smaller (50–1 km) blocks may result in the heat-
ing, dehydration, and melting of the mantle litho-
sphere, producing the smaller-volume, discrete 
episodes of central Andean Plateau magmatism 
(Drew et al., 2009; Ducea et al., 2013).

Much of the uncertainty of possible petro-
genetic sources (asthenosphere, mantle litho-
sphere, continental crust) in the central Andes is 
due to a lack of detailed knowledge of potential 
end-member compositions. Further complicat-
ing the spatiotemporal and geochemical patterns 
of central Andean Plateau lavas are variations of 
slab dip (e.g., Coira et al., 1993; Ramos et al., 
2002; Mamani et al., 2010), variable degrees 
of partial melting (e.g., Kay and Kay, 1993; 

Kay et al., 1994), and assimilation of hetero-
geneous crustal material (e.g., Davidson et al., 
1991; Davidson and de Silva, 1995; McLeod et 
al., 2012), as well as the possible influence of 
subducting aseismic oceanic ridges and subduc-
tion erosion of the forearc (Kay and Mpodozis, 
2002). It is within this uncertain context that 
we examine the rear arc composite Tunupa vol-
cano and regional rear arc magmatism. A better 
understanding of the temporal, spatial, and geo-
chemical history of the plateau is a key factor in 
resolving the petrogenetic-tectonic relationships 
in orogenic plateaus such as the central Andes.

METHODS

Sample Collection

Samples of individual lavas were collected 
at the lowest and highest accessible stratigraphic 

locations on the Tunupa edifice (Fig. 3). Care 
was taken to collect the freshest samples and to 
remove weathering rinds, although many sam-
ples are slightly altered, with oxidized mafic 
phenocrysts common. A single lava sample 
from the highly eroded edifice of Huayrana was 
also collected and analyzed.

Geochronology and Geochemistry

The 40Ar/39Ar analyses of groundmass glass 
separates were performed at the University of 
Wisconsin Rare Gas Geochronology Laboratory. 
In the absence of sanidine, groundmass separates 
were preferred for this study over biotite and 
plagioclase separates, as recent geochronologic 
studies of the central Andes have demonstrated 
that these phases often result in imprecise and 
inaccurate ages (e.g., Hora et al., 2010; Salis-
bury et al., 2011). Furnace experiments were 

Figure 2. Southern Altiplano region of the central Andes. Dark triangles show locations of Quaternary composite volcanoes; 
open circles are select Pliocene and younger monogenetic centers described in the literature. Data for our regional Quater-
nary geochemical comparison are compiled from the labeled arc-front centers of Parinacota (Hora et al., 2009); Aucanquil-
cha and La Poruñita (Grunder et al., 2008; Walker, 2011); Arintinca, El Rojo (Wörner et al., 1992); Irruputuncu, Isluga, and Olca 
(Wörner et al., 1992; Mamani et al., 2010). Data from monogenetic rear arc centers are labeled with numbers 1–4 (Davidson 
and de Silva, 1995); 5–8 (Hoke and Lamb, 2007); 9–10 (McLeod et al., 2012); 11–12 (Jiménez and López-Velásquez, 2008). 
Depths to the subducting Nazca plate are from Cahill and Isacks (1992).
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performed following the methods of Jicha et 
al. (2012). Ages are reported with 2σ analytical 
uncertainties and were calculated relative to a 
Fish Canyon standard age of 28.201 ± 0.046 Ma 
(Kuiper et al., 2008) and a value for λ40K of 
5.463 ± 0.107 × 10–10 yr–1 (Min et al., 2000).

Whole-rock major- and trace-element 
analyses (Table 1) were performed at the Geo-
Analytical Laboratory at Washington State Uni-
versity–Pullman. Whole-rock major-element 
concentrations were analyzed by X-ray fluo-
rescence (XRF) using lithium tetraborate fused 
beads and a Rigaku 3370 spectrometer with a 
Rh target. Trace-element concentrations were 
measured by XRF and inductively coupled 
plasma–mass spectrometry (ICP-MS). In cases 
where the same element was measured by both 
methods, ICP-MS results are reported. See 
Johnson et al. (1999) and Knaack et al. (1994) 
for complete analytical details.

Results

Phenocryst modal percentages of Tunupa 
lavas range from 15% to 30% and consist of 
plagioclase, clinopyroxene, amphibole, biotite, 
oxides, and rare orthopyroxene and olivine. Apa-

tite and zircon are observed as accessory phases. 
The groundmass varies from glassy to crystalline 
with microlites of plagioclase comprising much 
of the matrix. Disequilibrium textures of plagio-
clase, including sieved, or mottled, cores with 
clear, euhedral overgrowth rims (e.g., Tsuchi-
yama and Takahashi, 1983), are common.

40Ar/39Ar Age Determinations

Stratigraphically consistent weighted mean 
plateau ages are reported for two Tunupa flows, 
one pumice sample and one lava dome (Table 1; 
Fig. 4). Plateaus consist of at least three con-
tiguous steps containing >50% of the total 39Ar 
released and having ages that agree within 95% 
confidence limits (Renne, 2000). These ages 
indicate edifice construction between 1.55 ± 0.01 
and 1.40 ± 0.04 Ma, and they are significantly 
younger than the K-Ar ages reported by Baker 
and Francis (1978).

Downward-trending age spectra without 
obvious plateaus are also reported for two 
Tunupa flows, one Tunupa dome and the 
Huay rana sample (Fig. 4E). These spectra may 
indicate 39Ar recoil or may be related to het-
erogeneous alteration of the groundmass. In 

these cases, we use the total fusion ages with 
caution, three of which fall within the preferred 
age of Tunupa construction (Table 1). The total 
fusion age of 10.95 ± 0.02 Ma for Huayrana is 
within uncertainty of the 11.1 ± 0.4 Ma K-Ar 
whole-rock age of Baker and Francis (1978).
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TABLE 1. WHOLE-ROCK MAJOR- AND TRACE-ELEMENT DATA FOR TUNUPA VOLANO AND HUAYRANA LAVAS

Sample: T-02 T-04 T-05 T-10 T-11 T-12 T-13 T-15c T-18 T-25 T-29 T-30 T-31 T-32 T-35 T-36 T-14 T-08 T-09 T-15a T-16 T-19
 flow flow flow flow flow flow flow flow flow flow flow flow flow flow flow flow pumice dome dome dome dome Huayrana

XRF† (wt%)

SiO2 63.2 63.0 63.2 62.4 61.8 62.0 62.0 61.3 63.6 61.1 61.8 62.5 62.8 63.4 60.6 63.2 61.3 65.8 65.7 63.5 65.7 65.8
TiO2 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.1 1.3 1.2 1.1 1.2 1.2 1.4 1.1 1.2 0.8 0.9 0.9 0.9 0.7
Al2O3 15.9 15.9 15.9 15.7 15.9 15.9 16.1 15.8 16.0 15.7 16.0 15.7 15.6 15.6 16.7 15.7 16.7 15.6 15.6 17.1 15.8 15.7
FeO* 5.2 5.0 4.9 5.6 5.7 5.6 5.4 5.7 4.9 5.8 5.6 5.3 5.1 5.0 6.2 4.9 5.3 4.0 4.2 4.4 4.1 4.2
MnO 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
MgO 1.87 2.19 2.03 2.56 2.46 2.47 2.60 2.95 1.86 3.03 2.80 2.56 2.49 2.12 1.96 2.46 2.63 1.68 1.46 1.81 1.33 1.23
CaO 4.08 4.13 4.06 4.38 4.68 4.58 4.39 5.08 3.94 4.91 4.73 4.63 4.35 4.24 5.16 4.39 4.45 3.36 3.32 3.68 3.20 3.27
Na2O 4.49 4.55 4.62 4.29 4.29 4.31 4.34 4.16 4.58 4.32 4.03 4.25 4.34 4.37 4.52 4.12 4.42 4.36 4.36 4.10 4.42 4.23
K2O 3.7 3.6 3.6 3.5 3.4 3.4 3.5 3.3 3.7 3.3 3.3 3.4 3.6 3.6 2.9 3.6 3.5 4.0 4.1 4.1 4.1 4.5
P2O5 0.38 0.37 0.39 0.38 0.41 0.39 0.39 0.38 0.38 0.46 0.45 0.41 0.40 0.41 0.52 0.37 0.39 0.28 0.32 0.31 0.34 0.32
Sum† 99.04 99.45 99.08 100.11 99.10 98.95 98.90 98.26 98.82 98.89 96.91 98.87 99.10 99.10 98.35 97.06 97.47 99.55 98.74 97.15 98.61 98.47

ICP-MS§ (ppm)

Rb 84 83 81 83 77 78 65 82 82 74 73 80 88 86 56 86 71 99 104 82 98 174
Sr 814 852 881 763 790 770 777 771 879 881 872 865 817 860 980 809 827 747 733 817 736 777
Ba 1188 1204 1252 1087 1069 1066 1130 1051 1262 1015 1075 1156 1074 1076 1208 1079 1155 1134 1207 1313 1209 1128
Cs 1.2 1.2 1.1 1.8 1.0 1.1 0.9 1.4 1.1 1.8 1.6 0.9 2.0 1.2 0.5 1.8 1.4 1.8 1.4 1.8 1.2 2.4
Pb 12.3 11.2 13.8 15.5 13.1 13.5 12.8 12.6 14.1 13.8 13.9 14.2 14.7 13.1 9.3 16.4 16.6 18.3 16.3 19.6 13.7 13.7
Y 16 13 13 15 16 16 15 17 15 15 16 14 14 14 25 12 16 11 13 13 13 23
Zr 267 268 276 267 259 257 272 217 283 242 205 224 247 251 263 215 286 233 239 257 240 332
Hf 6.8 6.7 6.8 6.8 6.6 6.5 6.8 5.6 6.9 6.3 5.4 5.8 6.4 6.5 6.4 5.7 7.2 6.2 6.2 6.9 6.3 8.8
Nb 21.2 20.7 20.9 21.9 21.5 21.2 22.9 19.9 21.1 22.0 20.8 21.2 21.4 21.0 22.1 20.1 23.1 19.8 20.5 21.5 20.5 39.8
Ta 1.6 1.5 1.5 1.6 1.5 1.5 1.6 1.4 1.5 1.6 1.5 1.5 1.6 1.6 1.4 1.5 1.7 1.6 1.6 1.7 1.6 3.0
Th 10.7 10.6 10.4 11.1 10.5 10.1 11.4 9.3 10.4 10.3 8.3 8.7 11.5 11.6 5.3 9.9 11.9 12.2 12.1 13.2 11.9 32.5
U 2.5 2.4 2.4 2.6 2.5 2.5 2.5 2.3 2.5 2.5 2.1 2.1 2.7 2.8 1.2 2.3 2.6 3.0 3.0 2.8 2.9 8.0
La 54.5 53.0 54.9 51.6 50.0 48.5 51.8 55.0 67.0 49.7 48.2 51.7 49.8 52.0 45.8 48.9 55.5 51.7 53.0 74.0 53.3 94.8
Ce 97.7 99.2 102.6 97.8 95.2 95.8 98.9 91.1 102.4 95.4 91.7 97.0 94.1 98.0 94.4 91.2 101.3 95.0 97.0 114.1 96.9 152.4
Pr 11.4 11.2 11.8 11.3 11.0 11.0 11.3 11.7 14.0 11.3 11.2 11.3 10.8 11.4 12.1 10.5 12.1 10.7 11.0 15.3 11.0 18.3
Nd 41.9 40.7 42.7 41.6 40.9 41.0 41.8 44.5 50.6 43.0 42.7 42.7 40.2 42.9 50.5 38.8 44.7 38.3 39.3 54.3 39.9 63.0
Sm 7.3 7.0 7.2 7.1 7.3 7.4 7.2 7.9 8.2 7.7 7.8 7.5 7.1 7.4 10.8 6.8 7.8 6.5 6.8 8.6 6.8 10.1
Eu 1.9 1.9 1.9 1.9 1.9 2.0 1.9 2.1 2.1 2.1 2.1 2.0 1.9 1.9 3.1 1.8 2.0 1.7 1.7 2.0 1.7 2.1
Gd 5.3 4.8 4.9 5.2 5.4 5.5 5.3 6.1 5.7 5.5 5.8 5.2 5.0 5.2 9.1 4.7 5.7 4.3 4.6 5.7 4.7 7.0
Tb 0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 1.2 0.6 0.7 0.6 0.6 0.7 0.6 0.9
Dy 3.4 3.1 3.1 3.5 3.6 3.7 3.4 4.0 3.5 3.5 3.7 3.1 3.2 3.3 6.2 2.9 3.6 2.7 2.9 3.4 2.9 4.8
Ho 0.6 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.5 0.5 1.0 0.5 0.6 0.4 0.5 0.5 0.5 0.9
Er 1.4 1.2 1.2 1.4 1.4 1.5 1.4 1.6 1.4 1.4 1.5 1.2 1.3 1.2 2.2 1.1 1.5 1.0 1.1 1.1 1.1 2.2
Tm 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.1 0.1 0.2 0.2 0.3
Yb 1.1 1.0 0.9 1.1 1.2 1.2 1.1 1.2 1.1 1.1 1.2 0.9 1.0 1.0 1.5 0.8 1.2 0.8 0.9 0.9 0.9 1.9
Lu 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.3
Ni 14 13 13 12 13 12 14.3 24.2 12.8 22.6 22.3 15.4 17.6 14.3 19.3 15.7 14.1 9.4 10.3 10.6 11.9 10.5
Cr 38 36.6 35.3 41.3 41.7 37.4 39.7 92.2 33.5 76.9 62.9 50.7 54.7 42.7 57.6 49 48 26.8 29 28 27.6 20.1
Sc 8.0 7.9 7.6 9.5 9.5 10.6 9.9 11.9 7.8 10.6 9.4 9.0 9.0 8.4 10.2 8.0 9.4 6.0 6.3 7.2 6.4 7.9
V 106 99 110 124 126 129 117 137 101 135 127 124 119 114 141 109 115 75 85 84 73 79
Ga 22.2 23.4 26 21.9 22.8 21.6 23.6 22.0 22.0 22.0 21.9 22.4 23.5 22.5 24.0 22.6 23.0 21.6 23.4 24.8 23.1 22.6
Cu 18.7 18.6 11.7 18.3 16.3 18.2 18.6 21.3 15.7 34.1 21.7 15.2 16.8 20.9 35.9 12.7 21.1 14.8 17.9 11.3 16.8 17.0
Zn 95 88 91 99 95 100 107 91 117 105 97 90 96 94 125 89 101 94 99 93 94 66

Lat. (°S) 19.841 19.836 19.833 19.818 19.814 19.809 19.799 19.812 19.846 19.859 19.842 19.838 19.848 19.873 19.841 19.848 19.787 19.827 19.822 19.814 19.812 19.825
Long. (°W) 67.602 67.618 67.620 67.649 67.646 67.643 67.643 67.591 67.574 67.641 67.661 67.661 67.670 67.620 67.629 67.627 67.648 67.614 67.603 67.591 67.591 67.553

†X-ray fluorescence (XRF) analyses are normalized to 100%. Sum is prenormalized total. All analyses are from Tunupa except T-19.
§ICP-MS—inductively coupled plasma–mass spectrometry. 
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Major and Trace Elements

Tunupa whole-rock compositions (Table 2) 
comprise a high-K, calc-alkaline suite that 
ranges from 60 to 66 wt% SiO2, with MgO < 
3% and K2O > 2.9%, typical of differentiated 
magmas of the central Andean arc and rear arc. 
Major-element trends are generally well defined, 
with increasing SiO2 accompanied by decreases 
in CaO, MgO, FeO*, and TiO2, and increases 
in K2O (Fig. 5). Na2O concentrations are gen-
erally higher than K2O and are not defined by 
a linear trend. Dome samples plot at the silicic 
end of the Tunupa major-element trends, with 
an ~2 wt% gap in SiO2 between the flows and 
domes. The Huayrana sample is transitionally 
shoshonitic and similar to the Tunupa domes 
with respect to major elements.

Mantle-normalized trace-element patterns of 
Tunupa and Huayrana lavas are characterized 
by enrichments of large ion lithophile elements 
(LILEs) relative to high field strength elements 
(HFSEs) (Fig. 6). Tunupa and Huayrana rare 
earth element (REE) patterns are steep (Fig. 6; 
La/Ybn = 20–55, Dy/Ybn = 2.0–2.7). With 
increasing SiO2, most HFSEs show only moder-
ate variation, whereas the middle to heavy REEs 
decrease, and Rb and Ba increase (Fig. 7).

DISCUSSION

Comparison to Regional Lavas of the 
Central Andean Plateau

The Pleistocene Tunupa volcano shares mor-
phological, temporal, mineralogical, textural, 
and compositional features characteristic of 
previously studied composite centers of the cen-
tral Andes (Salisbury, 2011), consistent with an 
overall similar pattern of differentiation during 
ascent through, and interaction with, the thick 
Andean crust (e.g., Wörner et al., 1988; David-
son et al., 1991; Feeley and Davidson, 1994; 
Grunder et al., 2008). A minimum volume of 

84 km3 for the Tunupa edifice is estimated using 
a simple cone with a height of 1.64 km and a 
diameter of 14 km. Assuming that the youngest 
and oldest 40Ar/39Ar ages represent the interval of 
Tunupa eruptions, we calculate extrusion rates 
between 0.43 and 0.93 km3/k.y., similar to those 
calculated for Parinacota (0.75–1.0 km3/k.y.; 
Hora et al., 2007) and Lascar (0.70–0.93 km3/
k.y.; Gardeweg et al., 1998), although consider-
ably higher than lavas from the ≤1 Ma Aucan-
quilcha (0.04 km3/k.y.; Grunder et al., 2008) 
and Uturuncu (0.14–0.27 km3/k.y.; Sparks et al., 
2008) edifices.

Tunupa lavas are typically high-K, calc-alka-
line, plagioclase-dominated trachyandesites to 
trachydacites, with evidence for magma mixing 
including disequilibrium plagioclase textures 
and rimward increases in An content of many 
plagioclase phenocrysts (e.g., Tsuchiyama and 
Takahashi, 1983; Salisbury, 2011). Mixing is a 
common process in many composite cones of 
the central Andes (Davidson et al., 1991; Gini-
bre and Wörner, 2007) and may be necessary to 
facilitate eruption in the central Andes, as well 
as arc volcanoes worldwide (Kent et al., 2010; 
Kent, 2013). The strongly fractionated REE 
ratios of Tunupa and most other central Andean 
Plateau lavas imply a significant role for garnet, 
commonly attributed to magma differentiation 
at the base of the thick Andean crust (Hildreth 
and Moorbath, 1988; Davidson et al., 1991).

Major-element concentrations generally fall 
within the range for Parinacota and Aucanquil-
cha lavas, with the exception of TiO2 values, 
which are higher at Tunupa for a given wt% SiO2 
(Fig. 5). Despite overall arc-like patterns on man-
tle-normalized diagrams (Fig. 7), HFSE compo-
sitions are enriched within Tunupa lavas, with 
the most pronounced enrichment in Nb and Ta 
(Figs. 5 and 6). The predominance of Nb and Ta 
(fewer Ta analyses are available in the literature) 
is apparent in nearly every trace-element ratio 
involving these elements, including those relative 
to the less mobile HFSEs such as Nb/Zr (Fig. 8).

Available data from the southern Altiplano 
rear arc show that the observed Nb-Ta-Ti enrich-
ment at Tunupa is ubiquitous in lavas from the 
Quaternary centers of the eastern Altiplano and 
Eastern Cordillera (Figs. 2 and 5–8). This enrich-
ment is apparent in both ratios and concentra-
tions, and it suggests a distinct, rear arc, high-Nb 
(>~18 ppm) compositional domain. In contrast, 
available data for Nb concentrations of Quater-
nary lavas from the southern Altiplano frontal arc 
average less than 12 ppm (Mamani et al., 2010). 
The Nb-Ta-Ti rear arc enrichment appears to be 
plateau-wide and is apparent in rear arc lavas 
including from composite cones such as Utu-
runcu (Sparks et al., 2008; Michelfelder et al., 
2013) and Tuzgle (Coira and Kay, 1993) in the 
northern Puna and the <7 Ma mafic lavas of the 
southern Puna (Drew et al., 2009), as well as the 
shoshonitic and alkalic lavas from across the pla-
teau (Déruelle, 1991; Carlier et al., 2005).

Crustal versus Mantle Sources for Nb-Ta-
Ti Enrichment

A long-standing debate of central Andean 
frontal arc magmatism concerns the relative 
involvements, and influence in trace-element 
systematics, of the asthenosphere, mantle lith-
osphere, and continental crust (Hildreth and 
Moorbath, 1988; Rogers and Hawkesworth, 
1989; Davidson et al., 1991). Rear arc magma-
tism is similarly controversial, with the added 
complication of poorly constrained models for 
melt generation. In the southern Altiplano rear 
arc, Davidson and de Silva (1992, 1995) attrib-
uted the higher Nb/Zr ratios relative to the fron-
tal arc as likely due to lower degrees of partial 
melting related to a diminished slab flux. Lower 
degrees of partial melting of mantle peridotite, 
however, would promote higher abundances of 
the more incompatible trace elements, and lower 
values of ratios of Nb relative to more incompat-
ible elements such Th and U. Although there is 
overlap in the data (Fig. 8), such trends are gen-

TABLE 2. 40Ar/39Ar SUMMARY OF GROUNDMASS SEPARATE LASER INCREMENTAL HEATING EXPERIMENTS

Sample 
number

  

Sample type Location K/Ca 
total

Total fusion age
(Ma ± 2σ)

40Ar/36Ari 
(±2σ)

Isochron age
(Ma ± 2σ)

N % 39Ar MSWD Plateau age
(Ma ± 2σ)

Lat
(°S)

Long
(°W)

T-08 Tunupa dome 19.827 67.614 3.63 1.20 ± 0.06 294.8 ± 0.8 1.48 ± 0.11 8 of 10 72.8 0.74 1.40 ± 0.04
T-31 Tunupa flow 19.848 67.670 1.04 1.50 ± 0.01 295.7 ± 3.7 1.45 ± 0.03 5 of 9 66.3 0.40 1.45 ± 0.01
T-14 Tunupa pumice 19.787 67.648 8.26 1.51 ± 0.01 295.8 ± 1.1 1.51 ± 0.01 7 of 7 100.0 0.15 1.51 ± 0.01
T-15c Tunupa flow 19.812 67.591 0.93 1.56 ± 0.01 293.4 ± 3.8 1.55 ± 0.02 6 of 9 74.6 0.52 1.55 ± 0.01
T-05 Tunupa dome 19.833 67.620 1.52 ± 0.01 No plateau
T-16 Tunupa flow 19.812 67.591 1.52 ± 0.01 No plateau
T-30 Tunupa flow 19.838 67.661 1.59 ± 0.01 No plateau
T-19 Huayrana flow 19.825 67.553 10.95 ± 0.02 No plateau

Note: Ages were calculated relative to 28.201 Ma for the Fish Canyon sanidine standard. Preferred ages are in bold. MSWD—mean square of weighted deviates.
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erally not observed in Tunupa and eastern Alti-
plano rear arc lavas, particularly with respect 
to the well-studied Quaternary lavas from 
Aucanquilcha and Parinacota. Furthermore, 
geodynamic modeling of subduction zones with 
geometry comparable to the central Andes gen-
erally does not support significant amounts of 
melting by slab dehydration at large (>100 km) 
distances behind the frontal arc (Grove et al., 
2009). Thus, although lower degrees of partial 
melting related to a diminished slab flux in the 
rear arc cannot be ruled out definitively, it is 
unlikely to explain the high-Nb, rear arc geo-
chemistry.

In a seminal study of arc volcanoes along 
strike in the southern volcanic zone of the 
central Andes, Hildreth and Moorbath (1988) 
concluded that northerly increases in such 
mobile elements as K, Rb, Th, and U are 
best explained by increased involvement of 
thick, continental crust. Many of these same 
elements were also implicated by Michelf-
elder et al. (2013), who argued for increased 
involvement of older, more felsic continental 
crust in the rear arc at Uturuncu volcano com-
pared to the frontal arc. Although crustal con-
tamination is likely in most, if not all, lavas 
of the central Andean Plateau, we believe it 
is unlikely to explain the observed rear arc 
enrichment in Nb-Ta-Ti. Whereas K, Rb, Th, 
U, and La all increase with increasing SiO2 
at many individual central Andean centers, 
including Tunupa, Aucanquilcha, Ollagüe, 
Uturuncu, and Parinacota, Nb and Ta concen-

trations show very little variation with SiO2, 
suggesting that Nb and Ta concentrations are 
not strongly affected by crystal fractionation 
or crustal assimilation in the central Andes. 
Furthermore, Nb concentrations are relatively 
low in average continental crust (~12 ppm; 
Hawkesworth and Kemp, 2006) as well as in 
the limited exposures of pre-Cenozoic Andean 
basement rocks (average = 12.5 ppm, n = 76; 
Damm et al., 1994; Wörner et al., 2000b; 
Lucassen et al., 1999a) and crustal xenoliths 
(average = 14.4 ppm, n = 34; Lucassen et al., 
1999b; McLeod et al., 2013).

We consider the most likely source for Nb-
Ta-Ti enrichment to be the subcrustal litho-
spheric mantle. The association of Nb with Ta 
and Ti, and their enrichment in alkaline mag-
mas that are generally assumed to derive from 
metasomatized mantle lithosphere (e.g., Best 
and Christiansen, 2001), has long been recog-
nized (e.g., Parker and Fleischer, 1968). The 
most likely hosts for Nb and Ta (as well as an 
important host for Ti) in metasomatized mantle 
lithosphere are the volatile-bearing phases of 
amphibole and phlogopite (Ionov and Hoffman, 
1995; Kepezhinskas et al., 1996; Grégoire et 
al., 2000). Analyses of mantle xenoliths show 
that amphiboles and micas from metasomatic 
veins are highly enriched (50–200-fold) in Nb 
and Ta compared to primitive mantle and are 
characterized by high (Nb,Ta)/(Th, U, LREE) 
values (Ionov and Hofmann, 1995). Ti-oxides 
(rutile, ilmenite) can contain much higher con-
centrations of Nb and Ta but are not common 

mantle minerals (Ionov et al., 1997; Kalfoun 
et al., 2002). Long-term subduction along the 
western edge of South America, including peri-
odic episodes of low-angle subduction, could 
directly hydrate the mantle lithosphere (James 
and Sacks, 1999; Haschke et al., 2002), result-
ing in a metasomatized mantle rich in Nb-Ta-
Ti–bearing, hydrous mineral phases beneath the 
pre–Andean Plateau region.

Cenozoic arc and rear arc, mantle-derived 
xenoliths and primary alkaline magmas are absent 
in the central Andes (Lucassen et al., 2005), and 
as a result, no direct estimates of mantle composi-
tions are available for this time frame. However, 
studies of Nb-rich alkaline lavas and metaso-
matized mantle xenoliths from eruptions that 
predate Cenozoic plateau development provide 
evidence for the presence of ancient, Nb-Ta–rich, 
metasomatized lithospheric mantle beneath what 
is now the central Andes (Lucassen et al., 2005; 
Lucassen et al., 2007). Viramonte et al. (1999) 
described amphibole + Ti-rich phlogopite + apa-
tite veins in preplateau mantle xenoliths and sug-
gested that such veins served to enrich the Creta-
ceous lithospheric mantle. Such material would 
also be a viable source for Nb-Ta-Ti–enriched 
components in younger plateau magmas.

Delamination of the Mantle Lithosphere 
and Plateau Melt Generation

As the metasomatized lithosphere provides 
a viable source for the Nb-Ta-Ti–rich central 
Andean rear arc magmas, lithospheric delamina-
tion is a likely mechanism to trigger mantle melt-
ing. Although the details of the timing, scale, 
and physical mechanisms for delamination in 
the central Andes remain a matter of focused 
research, geophysical and structural evidence 
is consistent with the removal of large amounts 
of the mantle lithosphere and mafic lower crust 
beneath the central Andean Plateau during Ceno-
zoic shortening of the Andean orogeny (Kay and 
Kay, 1993; Whitman et al., 1996; Myers et al., 
1998; Beck and Zandt, 2002; Yuan et al., 2002; 
McQuarrie et al., 2005; Barnes and Ehlers, 2009; 
Kay and Coira, 2009). Displacement of mantle 
lithosphere to greater depths and higher pres-
sures is expected to result in the breakdown of 
hydrous phases, leading to dehydration melting 
(e.g., Elkins-Tanton, 2005) of the surrounding 
material (Fig. 9). If, as detailed herein, these 
phases also serve as a significant host for Nb-Ta-
Ti, melts generated from this process would also 
be expected to be enriched in these elements. 
Delamination may also trigger dry, decompres-
sion melting of upwelling asthenosphere, and 
it is likely that multiple source components are 
involved in rear arc, plateau magmatism (e.g., 
Redwood and Rice, 1997), resulting in a wide 
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Figure 9. Simplified model showing small-scale removal of lower crust and mantle lithosphere. Breakdown of 
hydrous minerals during delamination (foundering, removal) within the subcontinental lithospheric mantle (sclm) 
is proposed to trigger melting and produce the Nb-Ta-Ti–rich magmas. Recent geodynamic models of lithospheric 
removal suggest much more geodynamic complexity than illustrated here, with possible ductile dripping and partial, 
piecemeal removal of lower crust and lithosphere (e.g., Göğüş and Pysklywec, 2008; Krystopowicz and Currie, 2013). 
Depths of hydrous mineral breakdown are not well constrained and likely involve a number of intermediate reactions 
over variable pressures and depths (e.g., Trønnes, 2002). Crustal and lithospheric depths from Beck and Zandt (2002).
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range of magma compositions. We argue here 
that the Nb-Ta-Ti enrichment may be an impor-
tant indicator of increased involvement of the 
mantle lithosphere, whereas magmas with lower 
relative Nb enrichments may reflect a higher 
proportion of the convecting mantle.

In the rear arc of the southern Altiplano seg-
ment, the discrete episodes of mid-Miocene and 
younger plateau magmatism may each be related 
to small-scale delamination events (Ducea et 
al., 2013). If this is the case, the ca. 11 Ma, 
Nb-Ta–rich Huayrana lavas indicate that this 
process had begun in the region by this time. It 
remains unclear if older magmatism (late Oligo-
cene–early Miocene) of the region was related 
to small-scale delamination, or to a much larger 
episode of lithospheric removal and slab steep-
ening (Hoke and Lamb, 2007). Small-scale 
delamination and accompanying Nb-Ta-Ti–rich 
magmatism may have then continued across the 
southern Altiplano rear arc throughout the late 
Miocene to recent time, resulting in the mono-
genetic magmatism of the eastern Altiplano and 
the composite Tunupa lavas at ca. 1.55 Ma. The 
relative proximity to the frontal arc and gen-
eral similarity in composition and morphology 
may also indicate a subduction influence in the 
Tunupa lavas. Nb-Ta-Ti enrichments observed 
in rear arc, orogenic lavas that erupted across the 
central Andean Plateau (Déruelle, 1991; Sch-
reiber and Schwab, 1991; Carlier et al., 2005; 
Drew et al., 2009; Michelfelder et al., 2013; 
Coira and Kay, 1993; Hoke and Lamb, 2007; 
Jiménez and López-Velásquez, 2008) suggest 
that a plateau-wide relationship exists among 
piecemeal delamination, mineral dehydration 
within the mantle lithosphere, and the genera-
tion of Nb-Ta-Ti–rich magmatism in restricted 
centers (Figs. 8 and 9). Therefore, further refine-
ment of the time scales, volumes, and composi-
tions of central Andean Plateau volcanism may 
help to further constrain the spatiotemporal 
dynamics of plateau delamination.

On a global scale, we also note that simi-
lar Nb-Ta-Ti enrichments are observed in the 
mantle lithosphere–derived magmas from the 
Tibetan and Turkish-Iranian Plateaus, implying 
that this relationship may be a global phenom-
enon (Fig. 8; Nomade et al., 2004; Williams et 
al., 2004; Zhang et al., 2008; Allen et al., 2013). 
Many of the magmas from the southern Puna, 
Tibet, and Turkey-Iran are considerably more 
mafic (<55 wt% SiO

2) and are argued to contain 
little to no contributions from the continental 
crust (Williams et al., 2004; Drew et al., 2009; 
Allen et al., 2013). A key implication of this 
study is that the Nb-Ta-Ti enrichment remains 
apparent in lavas that have received significant 
additions from the continental crust, such as 
those from Tunupa volcano. We, thus, suggest 

that the Nb-Ta-Ti signature may be useful in 
identifying a hydrous-mineral–bearing mantle 
lithosphere component in regions where con-
centrations of K, Rb, and Ba may be strongly 
influenced by crustal contamination.
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